Это моя вторая запись из цикла "Живые хроники одного стартапа". С первой записи прошло почти две недели, и мне есть чем поделиться.
Уважаемые читатели! Кто-нибудь из вас хоть раз в жизни видел молекулу водорода? Или может быть атомарный водород? Или возможно протон Н+? Признаюсь, я видела водород только пару раз в жизни, когда на лабораторных работах по химии мы бросали цинк в соляную кислоту и наблюдали бурное выделение пузырьков газа. Это было занимательно, но тогда мы не задумывались, что этот выделяющийся газ можно собирать, хранить и использовать как топливо.
На сегодняшний день реализованы различные методы хранения водорода:
Физические:
Сжатый газообразный водород в газовых баллонах; стационарные массивные системы хранения, включая подземные резервуары; хранение в трубопроводах; хранение в стеклянных микросферах.
Жидкий водород в стационарных и транспортных криогенных контейнерах.
Химические:
Адсорбционный: цеолиты и родственные соединения; активированный уголь; углеводородные наноматериалы.
Абсорбция в объёме материала - металлогидриды;
Химическое взаимодействие: алонаты; фуллерены и органические гидриды; аммиак; губчатое железо; водореагирующие сплавы на основе алюминия и кремния.
Хранение газообразного водорода
Это не является более сложной проблемой, чем хранение природного газа. На практике для этого применяют газгольдеры, естественные подземные резервуары, хранилища, созданные подземными атомными взрывами. Доказана принципиальная возможность хранения газообразного водорода в соляных кавернах, создаваемых путём растворения соли водой через буровые скважины.
Для хранения газообразного водорода при давлении до 100 МПа используют сварные сосуды с двух- или многослойными стенками. Внутренняя стенка такого сосуда выполнена из аустенитной нержавеющей стали или другого материала, совместимого с водородом в условиях высокого давления, внешние слои – из высокопрочных сталей. Для этих целей применяют и бесшовные толстостенные сосуды из низкоуглеродистых сталей, расчитанных на давление до 40 – 70 МПа.
Одним из наиболее перспективных способов хранения больших количеств водорода является хранение его в водоносных горизонтах. Годовые потери составляют при таком способе хранения 1 – 3%. Эту величину потерь подтверждает опыт хранения природного газа.
Газообразный водород возможно хранить и перевозить в стальных сосудах под давлением до 20 МПа. Такие ёмкости можно подвозить к месту потребления на автомобильных или железнодорожных платформах, как в стандартной таре, так и в специально сконструированных контейнерах.
Баллоны для хранения водорода достаточно просты и компактны. Однако для хранения 1 кг водорода требуются болоны массой 33 кг. Прогресс в материаловедении даёт возможность снизить массу материала баллона до 20 кг на 1 кг водорода, а в дальнейшем возможно снижение до 8 – 10 кг. Пока масса водорода при хранении его в баллонах составляет примерно 2 – 3% от массы самого баллона.
Большие количества водорода можно хранить в крупных газгольдерах под давлением. Газгольдеры обычно изготовляют из углеродистой стали. Рабочее давление в них обычно не превышает 10 МПа. Вследствие малой плотности газообразного водорода хранить его в таких ёмкостях выгодно лишь в сравнительно небольших количествах. Повышение же давление сверх указанного, например, до сотен МПа, во-первых, вызывает трудности, связанные с водородной коррозией углеродистых сталей, и, во-вторых, приводит к существенному удорожанию подобных ёмкостей.
Для хранения очень больших количеств водорода экономически эффективным является способ хранения в истощённых газовых и водоносных пластах. В США насчитывается более 300 подземных хранилищ газа.
Хранение жидкого водорода
Среди многих уникальных свойств водорода, которые важно учитывать при его хранении в жидком виде, одно является особенно важным. Водород в жидком состоянии находится в узком интервале температур: от точки кипения 20К до точки замерзания 17К, когда он переходит в твёрдое состояние. Если температура поднимается выше точки кипения, водород мгновенно переходит из жидкого состояния в газообразное.
Чтобы не допустить местных перегревов, сосуды, которые заполняют жидким водородом, следует предварительно охладить до температуры, близкой к точке кипения водорода, только после этого можно заполнять их жидким водородом. Для этого через систему пропускают охлаждающий газ, что связано с большими расходами водорода на захолаживание ёмкости.
Переход водорода из жидкого состояния в газообразное связан с неизбежными потерями от испарения. Стоимость и энергосодержание испаряющегося газа значительны. Поэтому организация использования этого газа с точки зрения экономики и техники безопасности необходимы. По условиям безопасной эксплуатации криогенного сосуда необходимо, чтобы после достижения максимального рабочего давления в ёмкости газовое пространство составляло не менее 5 %.
К резервуарам для хранения жидкого водорода предъявляют ряд требований:
- конструкция резервуара должна обеспечивать прочность и надёжность в работе, длительную безопасную эксплуатацию;
- расход жидкого водорода на предварительное охлаждение хранилища перед его заполнением жидким водородом должен быть минимальным;
- резервуар для хранения должен быть снабжён средствами для быстрого заполнения жидким водородом и быстрой выдачи хранимого продукта.
Главная часть криогенной системы хранения водорода – теплоизолированные сосуды, масса которых примерно в 4 – 5 раз меньше на 1 кг хранимого водорода, чем при баллонном хранении под высоким давлением. В криогенных системах хранения жидкого водорода на 1 кг водорода приходится 6 – 8 кг массы криогенного сосуда, а по объёмным характеристикам криогенные сосуды соответствуют хранению газообразного водорода под давлением 40 МПа.
Жидкий водород в больших количествах хранят в специальных хранилищах объёмом до 5 тыс. м3. Крупное шарообразное хранилище для жидкого водорода объёмом 2850 м3 имеет внутренний диаметр алюминиевой сферы 17,4 м3.
Хранение и транспортирование водорода в химически связанном состоянии.
Преимущества хранения и транспортирование водорода в форме аммиака, метанола, этанола на дальние расстояния состоят в высокой плотности объёмного содержания водорода. Однако в этих формах хранения водорода среда хранения используется однократно. Температура сжижения аммиака 239,76 К, критическая температура 405 К, так что при нормальной температуре аммиак сжижается при давлении 1,0 Мпа и его можно транспортировать по трубам и хранить в жидком виде.
В диссоциаторах для разложения аммиака (крекерах), которое протекает при температурах примерно порядка 1173 – 1073 К и атмосферном давлении, используется отработанный железный катализатор для синтеза аммиака. Для получения одного кг водорода затрачивается 5,65 кг аммиака. Что касается затрат тепла на диссоциацию аммиака при использовании этого тепла со стороны, то теплота сгорания полученного водорода может до 20% превосходить теплоту сгорания использованного в процессе разложения аммиака. Если же для процесса диссоциации используется водород, полученный в процессе, то КПД такого процесса (отношение теплоты полученного газа к теплоте сгорания затраченного аммиака) не превышает 60 – 70%.
Водород из метанола может быть получен по двум схемам: либо методом каталитического разложения:
СН3ОН = СО + 2 Н2 – 90 кДж
с последующей каталитической конверсией СО, либо каталитической паровой конверсии в одну стадию:
Н2О + СН3ОН = СО2 + 3 Н2 – 49 кДж.
Обычно для процесса используют цинк-хромовый катализатор синтеза метанола. Процесс протекает при 573 – 673 К. Метанол можно использовать как горючее для процессов конверсии. В этом случае КПД процесса получения водорода составляет 65 – 70% (отношение теплоты полученного водорода к теплоте сгорания затраченного метанола); если теплота для процесса получения водорода подводится извне, теплота сгорания водорода, полученного методом каталитического разложения, на 22%, а водорода, полученного методом паровой конверсии, на 15% превосходят теплоту сгорания затраченного метанола.
Гидридная система хранения водорода
В случае хранения водорода в гидридной форме отпадает необходимость в громоздких и тяжёлых баллонах, требуемых при хранении газообразного водорода в сжатом виде, или сложных в изготовлении и дорогих сосудов для хранения жидкого водорода. При хранении водорода в виде гидридов объём системы уменьшается примерно в 3 раза по сравнению с объёмом хранения в баллонах. Упрощается транспортирование водорода. Отпадают расходы на конверсию и сжижение водорода.
Водород из гидридов металлов можно получить по двум реакциям: гидролиза и диссоциации.
Методом гидролиза можно получать вдвое больше водорода, чем его находится в гидриде. Однако этот процесс практически необратим. Метод получения водорода термической диссоциацией гидрида даёт возможность создать аккумуляторы водорода, для которых незначительное изменение температуры и давления в системе вызывает существенное изменение равновесия реакции образования гидрида.
Стационарные устройства для хранения водорода в форме гидридов не имеет строгих ограничений по массе и объёму, поэтому лимитирующим фактором выбора того или иного гидрида будет, по всей вероятности, его стоимость. Для некоторых направлений использования может оказаться полезным гидрид ванадия, поскольку он хорошо диссоциирует при температуре, близкой в 270 К. Гидрид магния является относительно недорогим, но имеет сравнительно высокую температуру диссоциации 560 – 570 К и высокую теплоту образования. Железо-титановый сплав сравнительно недорог, а гидрид его диссоциирует при температурах 320 – 370 К с низкой теплотой образования. Использование гидридов имеет значительные преимущества в отношении техники безопасности. Повреждённый сосуд с гидридом водорода представляет значительно меньшую опасность, чем повреждённый жидководородный танк или сосуд высокого давления, заполненный водородом.
Наиболее перспективным веществом для хранения водорода является боргидрид лития LiBH4. Это вещество способно удерживать до 18% водорода по массе. Существенным недостатком этого соединения является высокая температура (300 С) при которой боргидрид разлагается и высвобождает водород.
Другие материалы для хранения водорода
Материалы для хранения водорода - достаточно интересная и многообещающая тема в современном мире. Именно поэтому многие ученые работают в этом направлении. Если просмотреть много-много статей за последние пять-шесть лет, то можно найти различные варианты разработанных металлогидридных, полимерных или углеродных композитных материалов для хранения водорода.
Надо признать, что углеродные материалы прочно укрепились в этой области как приоритетные. Это и нанортубки, и графен, и фуллерены. Попадаются среди них и специфические ,вроде карбонизированных волокон куриных перьев.
Идея ученых заключается в том, что структура кератина (белка, из которого в основном состоят волокна куриных перьев) при процедуре карбонизации становится гораздо более пористой, чем в обычном состоянии, и белок становится способным поглощать и удерживать большое количество водорода.
Авторы посчитали, что применение карбонизированных волокон куриных перьев более эффективно в хранении водорода, чем углеродные нанотрубки или гидриды металлов.
К тому же куриные перья – дешевый материал.
Замечательно!
Мы разобрали все возможные на сегодняшний день варианты хранения водорода. А для чего же его хранить, да еще и в больших количествах? Конечно, для использования в топливных элементах.
Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:
• они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию).
• химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).
• они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).
• у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
• высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. У существующих топливных элементов КПД составляет 60-80%.
• КПД почти не зависит от коэффициента загрузки.
• ёмкость в несколько раз выше, чем в существующих аккумуляторах.
• полное отсутствие экологически вредных выбросов. Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).
Проблемы топливных элементов
• Главная проблема топливных элементов связана с необходимостью наличия “упакованного” водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H2S (сероводород), которые отравляют катализатор.
• Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.
• Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.
Кому это надо?
Все потребители водорода условно разделяются на три большие группы. К первой относятся те, которые используют для производства конечного продукта природные топлива, производят из них водород и применяют его на месте в цикле наряду с побочным производством других продуктов. Целесообразность замены привычных производственных технологий определяется при сравнении конечных затрат.
Вторую группу составляют потребители товарного водорода. В связи с переходом на безотходную переработку нефти возможно значительное увеличение потребности в товарном водороде.
В третью группу входят новые возможные потребители водорода: автотранспорт, авиация, пиковые электростанции, автономные энергосистемы, установки прямого восстановления металлов из руд и т. п. В далекой перспективе эта третья категория потребителей может стать основной.