Физики научили свет сворачиваться в «узелки»: Что такое плазмонные скирмионы и почему это прорыв?

24.04.2025

Недавнее исследование ученых из Штутгартского университета открыло совершенно новую страницу в книге оптики, показав, что свет может образовывать удивительно сложные, структурированные вихри, названные «скирмионными мешками». Звучит загадочно, правда? Давайте разбираться.

Не просто луч света, а вихревая структура?

Представьте, что свет — это не просто поток, а нечто, способное закручиваться в сложные узоры, почти как вода в водовороте или дым от сигареты. Вот примерно это и есть скирмионы, но в мире света. Изначально скирмионы были чисто математической концепцией, таким изящным способом описать определенные типы полей, похожих на вихри. Потом их «нащупали» в реальном мире — в магнитных материалах, где они проявляются как стабильные, крошечные магнитные завихрения. Долгое время считалось, что это их основная среда обитания.

Но команда под руководством профессора Харальда Гиссена из Штутгарта задалась вопросом: а что если попробовать создать нечто подобное из света? И не просто отдельные «световые вихри», а целые «мешки», где одни скирмионы упакованы внутри другого, большего скирмиона?

Золото, лазеры и немного магии наномира

Как же им это удалось? Фокус оказался в том, чтобы заставить свет взаимодействовать с поверхностью металла особым образом. Ученые взяли тончайший слой золота и с помощью современных технологий вытравили на его поверхности микроскопические канавки. Но не просто канавки, а хитроумный узор из двух шестиугольников, слегка повернутых друг относительно друга.

Когда на такую структурированную поверхность направляли свет, происходило нечто интересное. Свет, взаимодействуя с электронами на поверхности золота (это явление связано с так называемыми поверхностными плазмонами — коллективными колебаниями электронов), сам начинал вести себя необычно. Каждый из вытравленных шестиугольников генерировал свое собственное скирмионное световое поле — тот самый «световой вихрь».

Моделирование плазмонных решеток муаровых скайрмионов. Моделирование распределения электрического поля в решетках муаровых скирмионов с различными соизмеримыми углами закрутки φ. На изображениях слева 𝑧-компонента электрического поля представлена в виде цветной диаграммы, а внутриплоскостные компоненты — в виде векторной диаграммы. На верхних правых изображениях показан увеличенный вид 20 x 20 мкм2 вместе с периодичностью Муаре (обозначена кружком) и векторами сверхрешеток 𝒕𝟏 и 𝒕𝟐. arXiv:2411.03032 [physics.optics] Автор: Schwab, J., Neuhaus, A., Dreher, P. et al. Источник: arxiv.org

А дальше — физика во всей красе! Два этих световых поля наложились друг на друга (физики называют это суперпозицией). И вот результат этого наложения и породил те самые «скирмионные мешки». Представьте: один большой световой вихрь, а внутри него — несколько вихрей поменьше.

Управлять светом? Легко! (Ну, почти)

Самое захватывающее в этом открытии — это не просто факт создания таких структур, а возможность ими управлять. Исследователи обнаружили, что, изменяя угол поворота исходных шестиугольников на золотой подложке, они могут контролировать… количество скирмионов внутри «мешка»! То есть, они научились буквально «переупаковывать» свет, меняя его внутреннюю структуру по своему желанию.

Это уже не просто наблюдение за природным явлением, это целенаправленное конструирование световых полей с заданными, ранее не существовавшими свойствами. Конечно, для подтверждения своих результатов и построения точной теоретической модели штутгартским физикам потребовалась помощь коллег из Университета Дуйсбурга-Эссена и израильского Техниона в Хайфе — современная наука часто требует совместных усилий.

Зачем нужны эти «световые мешки»?

«Хорошо, — скажете вы, — физики поигрались со светом и золотом, создали красивые вихри. А нам-то что с этого?» Пока что это действительно область фундаментальной науки. То есть, ученые исследуют сами основы мироздания, расширяют наши знания о том, как устроен свет и как он взаимодействует с материей. Такие исследования не всегда дают немедленный практический результат.

Однако потенциал у этих «скирмионных мешков» огромный. Профессор Гиссен упоминает одно из возможных применений — микроскопию. В чем проблема обычных микроскопов? Они не могут показать нам объекты, которые меньше определенного размера. Этот предел связан с длиной волны света, которым мы подсвечиваем образец.

Cверхбыстрая время-разрешенная векторная микроскопия плазмонных мешков скирмионов. a, 2PPE-PEEM метод измерения. Метод фемтосекундной лазерной накачки-зондирования использует поляризованные пучки в сочетании с двухфотонной эмиссией электронов в электронном микроскопе для получения всех векторных компонент электрического поля распространяющихся поверхностных плазмон-поляритонов как функции времени Δ𝜏. b, РЭМ-изображения структуры 16,4° в соответствии с рис. 1d. Канавки вырезаны в чешуйках монокристаллического золота с помощью ионно-лучевой литографии. c, Фурье-фильтрованное ПЭЭМ-измерение плазмонных возбуждений. d, e, Реконструированные компоненты векторного поля поверхностных плазмон-поляритонных мешков скирмиона при различных углах закрутки φ. Векторы с положительной (отрицательной) 𝑧-компонентой выделены красным (синим) цветом. arXiv:2411.03032 [physics.optics] Автор: Schwab, J., Neuhaus, A., Dreher, P. et al. Источник: arxiv.org

Свет со сложной структурой, вроде скирмионных полей, теоретически может помочь обойти это ограничение. Если удастся создать микроскоп, использующий такие «световые мешки» для освещения или сканирования образца, мы, возможно, сможем увидеть детали наномасштаба, которые раньше были недоступны. Представляете, какие возможности это откроет в биологии, медицине, материаловедении?

Конечно, путь от лабораторного эксперимента на золотой пластинке до работающего устройства неблизкий. Нужно найти подходящие материалы, разработать технологии. Но сам факт того, что мы научились так тонко манипулировать светом, придавая ему невиданные ранее формы и структуры, уже будоражит воображение.

Это исследование — еще один шаг к пониманию и, возможно, управлению светом на совершенно новом уровне. Кто знает, какие еще сюрпризы таит в себе обычный, казалось бы, солнечный лучик? Физики продолжают задавать вопросы и искать ответы, открывая для нас все новые грани окружающего мира.

Источник: iXBT.com


Комментарии:

Пока комментариев нет. Станьте первым!