Новая технология добычи трудноизвлекаемых запасов нефти для Баженовской свиты

Опубликовано 03.12.2015
  |   просмотров - 4464,   комментариев - 0

Мы благодарны организаторам VIII Международного промышленно-экономического Форума «Стратегия объединения: Решение актуальных задач нефтегазового и нефтехимического комплексов на современном этапе», состоявшегося 19-20 ноября 2015 года в РГУ им. Губкина за возможность представить новую технологию добычи трудноизвлекаемых запасов нефти Баженовской свиты, получившей название Технология № 5 КВКР.

Технология разработана совместно компаниями «Новые Технологии» и «КОМПОМАШ-ТЭК». На текущий момент уже начата реализация проекта в кооперации с компанией «Газпром нефть» при научном участии и поддержке со стороны РГУ нефти и газа им. И. М. Губкина, МГУ им. М. В. Ломоносова, и в частности, Химического факультета МГУ и Нефтегазового центра МГУ.

СЛАЙД № 1. Проблема Бажена.
Баженовскую свиту часто сравнивают с североамериканскими нефтеносными сланцевыми плеями, такими как, Баккен/Три Форкс и Игл Форд. Но схожи они лишь внешне.
В отличие от североамериканских нефтеносных сланцевых плеев продуктивные пласты Бажена более пластичные, более неоднородны и, главное, менее мощные.
Так, на Баккене/Три Форкс или на Игл Форд, формируемый дренируемый объем, как правило, составляет от 30-40 млн. м3. На Бажене этот показатель почти в 10 раз ниже: 3-4 млн. м3.
Количества нефти низкопроницаемых пород в таком относительно небольшом дренируемом объеме недостаточно для преодоления точки безубыточности при добыче только самой нефти низкопроницаемых пород.
Именно поэтому, по мнению экспертов отрасли, экономически эффективное освоение Бажена возможно только при условии вовлечения в активную разработку дополнительного углеводородного ресурса - керогена. А это, в свою очередь, означает, что ПП Бажена необходимо нагревать…

СЛАЙД № 2. Основная проблема современных тепловых методов увеличения нефтеотдачи (ТМУН).
Основная проблема современных тепловых методов увеличения нефтеотдачи (ТМУН) заключается в отсутствии технологий, позволяющих доставлять высокотемпературный рабочий агент, на большие глубины. Так, например, в случае использования высококлассных и очень дорогих термокэйсов класса “E” (0.006>λ≥0.002 Вт/м°C; Р<20 МПа и Т<350°C) ТМУН могут быть использованы на глубине до 1400 метров. Более бюджетные термокэйсы класса “B” (0.06>λ≥0.04 Вт/м°C; Р<40 МПа и Т<400°C) позволяют доставлять рабочий агент на глубину 1500 метров, но с увеличенными тепловыми транспортными потерями.
В Технологическом комплексе Технологии № 5 КВКР используются уникальные НКТ с ТИП (0.0408 Вт/м°C), разработанные ЗАО «КОМПОМАШ-ТЭК» (Россия), которые за счет меньшего погонного веса могут быть использованы на глубине до 3500 метров. Но и их частное применение тоже не решает логистической проблемы, так как при доставке рабочего агента на забой скважины, находящийся на глубине 3000 метров, температура рабочего агента, в силу неизбежных тепловых транспортных потерь, снижается на 70 - 80°C.
Таким образом, рабочий агент, доставленный на забой скважины, например, на глубину 3000 метров, необходимо донагревать и также компенсировать потери давления рабочего агента на трении. Более того, желательно донагреть рабочий агент до более высокой температуры (480°C), по сравнению с той температурой, которую он имел на наземной части скважины (450°C) до начала процесса его транспортировки на забой скважины.

СЛАЙД № 3. Решение проблемы.
В Технологии № 5 КВКР эта основополагающая проблема современных тепловых МУН решена за счет организации на забое скважины, в её подпакерном объеме, экзотермической реакции окисления (ЭРО) органических соединений в СК-воде в присутствии окислителя. Конкретно, в качестве органического соединения используется метанол, а в качестве окислителя - пероксид водорода или воздух. В результате осуществления экзотермической реакции окисления метанола в СК-воде в присутствии, например, перекиси водорода образуются СО2, которым дополнительно обогащается рабочий агент, и Н2О, а также выделяется тепло, которое расходуется (а) на донагрев рабочего агента и, соответственно, (б) на повышение его давления до заданных технологией термобарических величин. 


СЛАЙД № 4. Традиционные тепловые МУН и Внутрипластовый ретортинг. Технология № 5 КВКР – технология Концепции внутрипластового ретортинга.
Существующие тепловые МУН можно разделить на две группы: а) традиционные ТМУН и б) тепловые методы Концепции внутрипластового ретортинга, включая термохимические методы.
Традиционные тепловые МУН используют в качестве рабочего агента, преимущественно, влажный пар, применение которого способно лишь временно изменить вязкость и плотность тяжелых углеводородов.
Отличие тепловых методов Концепции внутрипластового ретортинга от традиционного подхода заключается в том, что в результате использования высокотемпературного рабочего агента в форме сверхкритической воды или перегретого пара с высокой степенью перегрева происходит необратимое снижение вязкости и плотности тяжелых углеводородов. Они молекулярно модифицируются в продуктивном пласте и на поверхность извлекаются уже облагороженные, более легкие углеводороды.
Концепцию внутрипластового ретортинга очень часто называют Концепцией внутрипластового НПЗ, и некоторая предварительная переработка углеводородов в продуктивном пласте становится частью процесса их добычи.
Даунстрим становится частью апстрима.
Если говорить только об углеводородах, то использование такого подхода на Баженовской свите позволит:

- еще более улучшить качество нефти низкопроницаемых пород;

- конвертировать (разжижать и/или молекулярно изменять) битум в более легкие углеводородные фракции;

- и ГЛАВНОЕ осуществлять внутрипластовую генерацию синтетических углеводородов из керогена за счет его гидропиролизации.

СЛАЙД № 5. Формула Технологии № 5 КВКР.
Если же говорить, в целом, о потенциале Технологии № 5 КВКР, то она позволяет:
(1) в необходимом объеме
(2) формировать и доставлять в продуктивный пласт рабочий агент, имеющий (а) наиболее эффективный композиционный состав и (б) требуемые термобарические характеристики; при этом, одновременно,
(3) увеличивать проницаемость продуктивного пласта и реэнергезировать его,
(4) генерировать синтетические углеводороды (СУВ) из керогена и
(5) улучшать качество нефти низкопроницаемых пород и молекулярно модифицировать битум, и таким способом
(6) интенсифицировать добычу (а) нефти низкопроницаемых пород улучшенного качества и (б) сгенерированных внутри продуктивного пласта синтетических углеводородов за счет их отбора через зону с увеличенной проницаемостью.
В самом общем виде при внесении в продуктивный пласт рабочего агента в форме сверхкритической воды (Т = 480°C и Р до 45 МПа) в продуктивном пласте осуществляются три взаимосвязанных и условно разделенных процесса:
- реэнергизация продуктивного пласта;
- увеличение проницаемости продуктивного пласта;
- процесс, направленный на уменьшение величины степени молекулярной блокировки нанофлюидопроводящих каналов крупными молекулами углеводородов за счет из дробления на более мелкие молекулы.
Так, например, крупные молекулы асфальтенов, достигающие в диаметре 30 нанометров, способны блокировать макрофлюидопроводящие каналы (толщина более 50 нанометров), не говоря уже о флюидопроводящих каналах на микро (до 5 нанометров) и мезоуровне (от 5 до 50 нанометров).

СЛАЙД № 6. Механизм увеличения КИН Технологии № 5 КВКР.
Прогнозируемый КИН Технологии № 5 КВКР составляет от 40 до 50%.
Прогнозированное достижение такого высокого КИН было бы невозможно без обеспечения а) реэнергизации продуктивного пласта - повышения внутрипластового давления до максимально возможного: 45 МПа, б) увеличения его проницаемости, в) снижения величины степени молекулярной блокировки нанофлюидопроводящих каналов и, наконец, г) отбора углеводородов в скважину через области продуктивного пласта с измененной увеличенной проницаемостью.
Названные выше процессы являются одновременно и безусловными факторами успеха экономически эффективного освоения Баженовской свиты с использованием циклического термохимического воздействия.

СЛАЙД № 7. Структура Технологии № 5 КВКР.
На данной диаграмме представлена структура Технологии № 5 КВКР.

СЛАД № 8. Комментарий к структурным блокам.
• Блок «Внутрипластовый ретортинг»:
40 лет работы ведущих мировых R&D структур. Сотни исследований. Десятки сотен лабораторных исследований. Успешные пилотные проекты SHELL и EXXON MOBIL. Фундаментальные исследования, в целом, завершены. Доминируют прикладные исследования.
• Блок «Химические реакции»:
Экзотермическая реакция окисления органических соединений в сверхкритической воде в присутствии окислителя - доказанная и хорошо изученная химическая реакция.
• Блок «Технологический комплекс»:
Технико-технологических препятствий реализации Проекта «Технология № 5 КВКР» не существует.
• Блок «Математическое моделирование»:
Нами начато создание модели пласта и внутрипластовых комплексных процессов - «виртуальный керн/пласт», FIB-SEM, решеточный метод Больцмана (LBM) и т.д.

СЛАЙД № 9. I. Внутрипластовый ретортинг - значимые базовые прикладные положения.
Наиболее значимые базовыми положениями Концепции внутрипластового ретортинга представлены в Таблице на Слайде № 9.

СЛАЙД № 10. II. Химические реакции.
На Слайде 10 представлены результаты трех исследований по определению величины тепловыделения (кДж/моль) при осуществлении экзотермической реакции окисления метанола в сверхкритической воде. Исследования выполнены специалистами из Массачусетского технологического института (США), Университета г. Хиросима (Япония) и Национальной лаборатории «Сэндиа» (США).
Также на слайде размещены фотографии взрывного и продолжительного окисления пропанола в сверхкритической воде в присутствии окислителя с образованием пламени при концентрации топлива более 16%.
В Технологии № 5 КВКР используется процесс безопасного беспламенного продолжительного окисления метанола в сверхкритической воде в присутствии окислителя при концентрации метанола не более 5-ти %. Продолжительность процесса окисления – 5-6 секунд.

Слайд № 11. III. Технологический комплекс Технологии № 5 КВКР.
Технологический комплекс № 5 КВКР состоит из:
• Наземного генератора сверхкритической воды (Т=450°C и Р 45 МПа);
• Установки подготовки ПНГ;
• НКТ с теплоизоляционным покрытием (до 3500 метров);
• Термостойкого скважинного пакера, способного работать при температуре 700°C и давлении70 МПа; и
• Термостойкого затрубного пакера, способного работать при температуре 700°C и давлении до 100 МПа.

СЛАЙД № 12. Эксклюзивность Технологии № 5 КВКР.
Эксклюзивность потенциала Технологии № 5 КВКР заключается в ее способности:

1. Генерировать рабочий агент, который имеет наиболее эффективный состав, для внутрипластовой генерации синтетических углеводородов из керогена.

2. Экономически эффективно доставлять в продуктивный пласт, находящийся на глубине от 2500 до 3500 метров, рабочий агент с указанным выше композиционным составом и требуемыми термобарическими характеристиками.

3. Увеличивать до 5-ти раз проницаемость продуктивного пласта и создавать объемную и объединенную внутрипластовую флюидопроводящую систему.

4. Реэнергизировать продуктивный пласт - создавать мощный напорный режим отбора углеводородов. 

5. Рационально извлекать углеводородные ресурсы. Так, например, прогнозируемая накопленная добыча нефти из одной скважины с дренируемым объемом горной породы равным 4 млн. м3 (Бажен) равна или больше прогнозируемой накопленной добычи нефти из одной скважины с дренируемым объемом равным 40 млн. м3 (Баккен/Три Форкс).

6. Обеспечивать высокоэффективную добычу нефти из Бажена без предварительно проведенного многостадийного ГРП (МГРП).

7. Технология № 5 КВКР, несмотря на ее молодость, характеризуется высокой степенью технико-технологической зрелости, так как комбинаторно сформирована из нескольких зрелых технологий, давно и хорошо освоенных российской промышленностью.

8. За счет интенсивного способа извлечения нефти срок выработки месторождения до практически полного истощения сокращается в разы, соответственно сокращаются затраты на энергетику, расходы на содержание и эксплуатацию месторождения. 



Комментарии:

Пока комментариев нет. Станьте первым!