Термооптика композитных наночастиц в биомедицинских применениях

25.08.2011

Ю. А. Аветисян1,2, А. Н. Якунин1,2,3, В. В. Тучин1,2

1Институт проблем точной механики и управления РАН, Саратов
2Саратовский государственный университет им. Н.Г. Чернышевского, Саратов
3Саратовский государственный технический университет, Саратов

Задачи исследования. В настоящее время активно исследуется возможность использования плазмонно-резонансных наночастиц в онкологии для лазерного фототермолиза раковых клеток, маркированных такими наночастицами, Вместе с тем, детального изучения кинетики локального распределения температурного поля как в пределах самих поглощающих наночастиц, так и в непосредственной близости от них, насколько нам известно, выполнено не было. Решение этой задачи представляет особый интерес для разработки эффективных алгоритмов управления температурными эффектами на масштабах соизмеримых и меньших размеров наночастиц, что и составляет цель настоящей работы.

Материалы и методы. В настоящей работе на основании решения нестационарного уравнения теплопроводности теоретически исследовалась возможность эффективного термического воздействия импульсного лазерного излучения (с длиной волны ~800нм) на клеточную мембрану в области ее соприкосновения с композитными наночастицами – типичными для экспериментов сферическими нанооболочками, состояшими из диэлектрического ядра (из плавленого кварца радиусом~70нм) и золотого покрытия (толщиной ~15нм).

Результаты и выводы. При облучении рассмотренных наночастиц серией импульсов линейно поляризованного лазерного света пикосекундного диапазона существует эффект пространственно-временной локализации температурного поля, характеризующийся следующим:

1. Температурное поле, возникающее в объеме собственно наночастицы и в непосредственной близости от нее, имеет выраженную пространственную неоднородность, которая нарастает во время каждого отдельного импульса накачки и существует некоторое время (~ 50 пс) после его завершения, что определяет ее «время жизни».

2. Нарушается радиальная симметрия распределения температуры относительно центра нанооболочки, что приводит к заметной неравномерности нагрева наружной поверхности наночастицы и возникновению на ней «горячей» зоны в форме обруча, лежащего в плоскости, ортогональной вектору поляризации облучающего света.

Обнаруженная пространственно-временная локализация температурного поля должна учитываться в таких приложениях, как дефрагментация нанооболочек, лазерная оптопорация клеток, фототермолиз раковых клеток и бактерий, а также фототермическое вскрытие микро- и нанокапсул с лекарственными препаратами. Использование эффекта пространственно-временной локализации температурного поля перспективно с точки зрения минимизации травмирующего действия повышенной температуры на живую ткань и предоставляет дополнительные возможности прецизионного управления названными выше процессами.

Комментарии:

Пока комментариев нет. Станьте первым!