Учёные МФТИ придумали наномоторы для будущих нанороботов

10.11.2016

Учёные Московского физико-технического института (МФТИ), Института химической физики им. Н. Н. Семёнова РАН и Института химии поверхности Национальной академии наук Украины предложили модель дипольного фотомотора – крошечного управляемого устройства, активируемого светом. Такой «наномотор» способен двигаться в заданном направлении с рекордно высокой скоростью и тащить на себе некоторый груз. Результаты опубликованы в журнале The Journal of Chemical Physics.

«Рекордные характеристики дипольных фотомоторов на основе полупроводниковых нанокластеров позволяют надеяться, что эти наномашины не только заполнят имеющуюся брешь в семействе линейных фотомоторов, но и найдут самое широкое применение повсюду, где требуется скоростной транспорт наночастиц: в химии и физике для создания новых аналитических и синтетических инструментов, в биологии и медицине для доставки лекарств к больным участкам живых организмов, для генной терапии и во многих других задачах», - говорит руководитель коллектива Леонид Трахтенберг, профессор Кафедры химической физики МФТИ и заведующий Лабораторией функциональных нанокомпозитов ИХФ РАН.

Сотрудничество Леонида Трахтенберга и Виктора Розенбаума, заведующего отделом теории наноструктурных систем ИХП НАНУ, привело к созданию теории линейных фотомоторов. Она позволяет конструировать наномашины, движением которых можно управлять с помощью лазера. Учёные нашли связь между параметрами этих устройств и их важнейшей рабочей характеристикой – скоростью.

Прототипами управляемых наномашин в живой природе служат так называемые броуновские (молекулярные) моторы – белковые устройства, которые под действием неравновесных флуктуаций различной природы преобразуют хаотическое броуновское движение в направленное поступательное, возвратно-поступательное или вращательное движение. Броуновские моторы обеспечивают сократительную активность тканей (работу мышц), подвижность клеток (движение жгутиковых бактерий), внутри- и межклеточный транспорт органелл и сравнительно крупных частиц вещества (питание клетки и утилизация отходов её деятельности). Эти процессы совершаются с удивительно высокой эффективностью, приближающейся к 100%.

«Понимание основ деятельности таких природных моторов позволяет не только воспроизводить их, но и конструировать новые высокоэффективные искусственные образцы с разнообразными функциями, вплоть до создания нанороботов, способных выполнять различные задания. Уже в течение нескольких десятилетий специалисты в разных областях, объединив свои усилия, весьма успешно работают над созданием управляемых наномашин. Признанием актуальности и успешности этих работ, их большого значения для научно-технического прогресса стало присуждение в 2016 году Нобелевской премии по химии за конструирование и синтез молекулярных машин», - говорит Виктор Розенбаум.

Работу броуновских моторов можно инициировать различными способами. Например, с помощью химических реакций, тепла, электрических или световых импульсов. В последнем случае речь идёт о фотомоторах.

Около десяти лет назад была разработана модель линейного дипольного фотомотора, действие которого основано на разности дипольных моментов молекулы (частицы) в двух электронных состояниях. Чем больше разность дипольных моментов, тем выше скорость и эффективность такого мотора.

При облучении мотора лазерным импульсом происходит его активация. Импульс должен попасть в резонанс с электронами внутри наноцилиндра. Далее происходит разделение заряда в полупроводниковом наноцилиндре, он электростатически взаимодействует с полярной подложкой. Циклическое включение и выключение света приводит к зависимости потенциальной энергии взаимодействия цилиндра с подложкой от времени, эта зависимость и заставляет наномотор двигаться в заданном направлении.

Фотомоторы на основе неорганических наночастиц гораздо эффективнее и «быстрее» своих аналогов, построенных на органических молекулах. Так, в цилиндрическом полупроводниковом нанокластере до действия светового импульса практически отсутствует дипольный момент, а фотовозбуждение приводит к перемещению электрона из объёма на поверхность и возникновению гигантского дипольного момента.

«Предложенная модель фотомотора на основе полупроводникового наноцилиндра имеет оптимальные параметры и, соответственно, рекордно высокую скорость — порядка 1 мм/с, что примерно на три порядка выше, чем у природных белковых моторов или у аналогичных моделей на основе органических молекул», - сообщают авторы публикации.

Алена Зевякина, planet-today.ru


Комментарии:

Пока комментариев нет. Станьте первым!