В МФТИ узнали может ли космологическая инфляция быть квантовым эффектом30.10.2024 Ученые из России и Кореи провели теоретическое исследование трех различных моделей ускоренного расширения ранней Вселенной. Они рассмотрели модели, в которых потенциал, вызывающий расширение, генерируется квантовыми эффектами. Оказалось, что первая модель может быть согласована с наблюдениями, а остальные две нет.
Исследование опубликовано в Physics of Particles and Nuclei Letters.
В последние годы ученые пытаются разгадать загадку космической инфляции — периода стремительного расширения нашей Вселенной в ранние моменты ее существования. Проблема в том, что существующие теоретические модели не всегда соответствуют тем данным, которые мы получаем из наблюдений. Более того, оказывается непонятным происхождение тех потенциалов, с помощью которых удается описать инфляцию. Недавние исследования, о которых идет речь в новой статье российских физиков, предлагают свежий взгляд на эту проблему, изучая различные модели, описывающие инфляцию и их соответствие наблюдаемым данным. Ученые провели численный анализ трех относительно простых моделей инфляции, каждую из которых характеризуют уникальные параметры. Результаты исследования показали, что первая модель, описывающая инфляцию с помощью скалярного поля с ненулевой массой и минимальным гравитационным взаимодействием, демонстрирует согласие с данными наблюдений при определенных условиях. Однако не все параметры в этой модели способны поддерживать данное соответствие. Исследования показали, что вместе с тем, параметры, находящиеся ниже предела массы Планка, представляют самый интересный и многообещающий диапазон. В частности, особое внимание было уделено области малых значений массы и большому начальному значению скалярного поля, что указывает на необходимость дальнейших исследований в этой области. Вторая модель описывает безмассовое скалярное поле, взаимодействующее с гравитацией неминимальным образом. Она пытается учесть вклад только от гравитации. Параметр N (количество е-фолдингов, то есть расширений в число е раз) имеет нижнюю границу в районе 50—60, что соответствует инфляционному расширению до стадии разогрева Вселенной. Полное количество е-фолдингов может быть и больше, в зависимости от рассматриваемой модели. Поэтому вторая модель не подходит (помимо сильной связи), т. к. она согласуется с наблюдательными данными только при N = 40. Это ставит под сомнение ее способность решать проблемы горизонта и плоскости, которые стоят перед космологией. Третья модель — это обобщение модели Колмана—Вайнберга для гравитации, которая также не совпадает с наблюдениями. Хотя она использует сложные параметры для описания эффективного потенциала и учитывает взаимодействие поля с самим собой, результаты показывают ее несовпадение с данными наблюдений, что указывает на необходимость дальнейших усовершенствований и неприменимость этой модели в существующем виде.
«Рассмотренные нами модели являются минимальными модификациями общей теории относительности, что делает их простейшими естественными кандидатами на роль истинной теории космической инфляции, — рассказал Владимир Шмидт, ассистент кафедры высшей математики МФТИ. — Мы пришли к выводу, что первая модель отлично согласуется с наблюдениями при некоторых значениях параметров, а оставшиеся две нуждаются в модификации». В рамках первой модели было рассмотрено четыре случая: инфляция, в которой Вселенная N = 50 раз расширилась в число e (около 2,71828) раз, 60 раз, 64 раза и 70 раз. В первую очередь исследователей интересовали параметры ns и r, которые играют ключевую роль в понимании инфляционного процесса и его влияния на формирование структуры Вселенной. Первый из них называется спектральным индексом, который представляет собой меру того, какие структуры (флуктуации плотности вещества в ранней Вселенной) возникают чаще: более плотные или менее плотные. Значение его единица соответствует равномерному распределению структур. Если он меньше единицы, то крупные структуры возникают чаще, если больше, то реже. Оценить этот спектральный индекс можно, измеряя температуру реликтового излучения Вселенной в разных точках неба и сопоставляя эти температуры между собой. Второй из этих параметров называется тензорно-скалярным соотношением. Это отношение амплитуд гравитационных волн к плотностям материи, которые возникают вследствие инфляции. Он показывает, насколько сильно инфляционное расширение Вселенной создает гравитационные волны по сравнению с тем, как их создает сама материя. Большое значение этого параметра означает, что космическая инфляция происходила в условиях, в которых на формирование Вселенной огромную роль оказывают возникающие вследствие инфляции гравитационные волны. Если же этот параметр близок к нулю, то влиянием гравитационных волн можно пренебречь. Оба параметра могут быть оценены с помощью данных наблюдений за реликтовым излучением. В результате моделирования оказалось, что при N = 70 для первой модели существуют значения параметров, при которых модель совпадает с наблюдениями. Оставшиеся две модели совсем не дали совпадения. «Исследованные нами модели представляют собой любопытные примеры инфляционных сценариев, основанных на квантовых эффектах. Первая модель, в частности, демонстрирует обещающий подход к объяснению инфляции, основываясь на простых предположениях, при этом обеспечивая согласие с наблюдаемыми данными, — рассказал Андрей Арбузов, первый автор статьи, начальник сектора №5 Лаборатории теоретической физики имени Н.Н. Боголюбова ОИЯИ (Дубна). — Мы надеемся, что наши выводы будут способствовать дальнейшим исследовательским усилиям в области квантовой гравитации и расширят наше понимание космологических процессов».
Источник: Naked Science Комментарии:Пока комментариев нет. Станьте первым! |